Project: Part 1

Preparing the tourism data for plotting. I worked with Carson Klemmer.

  1. I downloaded the average hourly earnings of male and female employees in 2016 data from Our world in Data. I selected this data, because I plan on traveling after I graduate from Sonoma State.

  2. This is the link to the data.

  3. The following code chunk loads the packages I will use to record in and prepare the data for analysis.

  1. Read the data in
tourist_arrivals_by_region <- 
  read.csv(here::here("_posts/2022-05-03-project-part-1/international-tourist-arrivals-by-world-region.csv"))
  1. Use glimpse to see the names and types of the columns
glimpse(tourist_arrivals_by_region)
Rows: 205
Columns: 4
$ Entity                         <chr> "Africa", "Africa", "Africa",…
$ Code                           <lgl> NA, NA, NA, NA, NA, NA, NA, N…
$ Year                           <int> 1950, 1960, 1965, 1970, 1975,…
$ International.Tourist.Arrivals <int> 500000, 800000, 1400000, 2400…
#View(tourist_arrivals_by_region)
  1. Use output from glimpse (and View) to prepare the data for analysis
regions <-c("Africa",
            "Middle East",
            "Asia & Pacific",
            "Americas",
            "Europe")

regional_tourism <- tourist_arrivals_by_region %>% 
  rename(Region = 1) %>% 
  filter(Year >=2000, Region %in% regions) %>% 
  select(Region, Year, International.Tourist.Arrivals)

regional_tourism
           Region Year International.Tourist.Arrivals
1          Africa 2000                       27900000
2          Africa 2001                       29100000
3          Africa 2002                       30000000
4          Africa 2003                       31600000
5          Africa 2004                       34500000
6          Africa 2005                       37300000
7          Africa 2006                       41400000
8          Africa 2007                       44300000
9          Africa 2008                       44400000
10         Africa 2009                       45900000
11         Africa 2010                       50400000
12         Africa 2014                       55200000
13         Africa 2015                       53800000
14         Africa 2016                       58200000
15         Africa 2017                       63000000
16         Africa 2018                       67000000
17       Americas 2000                      128200000
18       Americas 2001                      122100000
19       Americas 2002                      116700000
20       Americas 2003                      113100000
21       Americas 2004                      125700000
22       Americas 2005                      133500000
23       Americas 2006                      135800000
24       Americas 2007                      142500000
25       Americas 2008                      147800000
26       Americas 2009                      141700000
27       Americas 2010                      150100000
28       Americas 2014                      181900000
29       Americas 2015                      192700000
30       Americas 2016                      200900000
31       Americas 2017                      207000000
32       Americas 2018                      217000000
33 Asia & Pacific 2000                      110600000
34 Asia & Pacific 2001                      115700000
35 Asia & Pacific 2002                      124900000
36 Asia & Pacific 2003                      113300000
37 Asia & Pacific 2004                      144200000
38 Asia & Pacific 2005                      155400000
39 Asia & Pacific 2006                      166800000
40 Asia & Pacific 2007                      184200000
41 Asia & Pacific 2008                      184100000
42 Asia & Pacific 2009                      181100000
43 Asia & Pacific 2010                      205500000
44 Asia & Pacific 2014                      264400000
45 Asia & Pacific 2015                      279300000
46 Asia & Pacific 2016                      302900000
47 Asia & Pacific 2017                      323000000
48 Asia & Pacific 2018                      343000000
49         Europe 2000                      391000000
50         Europe 2001                      395200000
51         Europe 2002                      407000000
52         Europe 2003                      407100000
53         Europe 2004                      424400000
54         Europe 2005                      441500000
55         Europe 2006                      462100000
56         Europe 2007                      484900000
57         Europe 2008                      485200000
58         Europe 2009                      461700000
59         Europe 2010                      489400000
60         Europe 2014                      580200000
61         Europe 2015                      607500000
62         Europe 2016                      619700000
63         Europe 2017                      671000000
64         Europe 2018                      713000000
65    Middle East 2000                       24400000
66    Middle East 2001                       24500000
67    Middle East 2002                       28500000
68    Middle East 2003                       29500000
69    Middle East 2004                       36300000
70    Middle East 2005                       39000000
71    Middle East 2006                       41400000
72    Middle East 2007                       47400000
73    Middle East 2008                       55200000
74    Middle East 2009                       52800000
75    Middle East 2010                       55400000
76    Middle East 2014                       55400000
77    Middle East 2015                       55900000
78    Middle East 2016                       53600000
79    Middle East 2017                       58000000
80    Middle East 2018                       64000000

Check that the totals for 2000 equals the total in the graph

regional_tourism %>% filter(Year == 2000) %>% 
  summarize(total_arrivals = sum(International.Tourist.Arrivals))
  total_arrivals
1      682100000

Add a picture

International Tourist Arrivals by Region

Write the data to file in project directory

write_csv(regional_tourism, file = "international-tourist-arrivals-by-world-region.csv")