Code for Quiz 5. More practice with dplyr functions.
drug_cos.csv
in to R and assign it to drug_cos
.drug_cos <- read_csv("https://estanny.com/static/week5/drug_cos.csv")
glimpse()
to get a glimpse of your data.glimpse(drug_cos)
Rows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet…
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New …
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.366…
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.666…
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.163…
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.321…
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.488…
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,…
distinct()
to subset distinct rows.# A tibble: 8 × 1
year
<dbl>
1 2011
2 2012
3 2013
4 2014
5 2015
6 2016
7 2017
8 2018
count()
to count observations by group.# A tibble: 8 × 2
year n
<dbl> <int>
1 2011 13
2 2012 13
3 2013 13
4 2014 13
5 2015 13
6 2016 13
7 2017 13
8 2018 13
# A tibble: 13 × 2
name n
<chr> <int>
1 AbbVie Inc 8
2 Allergan plc 8
3 Amgen Inc 8
4 Biogen Inc 8
5 Bristol Myers Squibb Co 8
6 ELI LILLY & Co 8
7 Gilead Sciences Inc 8
8 Johnson & Johnson 8
9 Merck & Co Inc 8
10 Mylan NV 8
11 PERRIGO Co plc 8
12 Pfizer Inc 8
13 Zoetis Inc 8
# A tibble: 13 × 3
ticker name n
<chr> <chr> <int>
1 ABBV AbbVie Inc 8
2 AGN Allergan plc 8
3 AMGN Amgen Inc 8
4 BIIB Biogen Inc 8
5 BMY Bristol Myers Squibb Co 8
6 GILD Gilead Sciences Inc 8
7 JNJ Johnson & Johnson 8
8 LLY ELI LILLY & Co 8
9 MRK Merck & Co Inc 8
10 MYL Mylan NV 8
11 PFE Pfizer Inc 8
12 PRGO PERRIGO Co plc 8
13 ZTS Zoetis Inc 8
##Use filter()
to extract rows that meet criteria.
# A tibble: 26 × 9
ticker name location ebitdamargin grossmargin netmargin ros
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 ZTS Zoetis Inc New Jer… 0.222 0.634 0.111 0.176
2 ZTS Zoetis Inc New Jer… 0.379 0.672 0.245 0.326
3 PRGO PERRIGO C… Ireland 0.236 0.362 0.125 0.19
4 PRGO PERRIGO C… Ireland 0.178 0.387 0.028 0.088
5 PFE Pfizer Inc New Yor… 0.634 0.814 0.427 0.51
6 PFE Pfizer Inc New Yor… 0.34 0.79 0.208 0.221
7 MYL Mylan NV United … 0.228 0.44 0.09 0.153
8 MYL Mylan NV United … 0.258 0.35 0.031 0.074
9 MRK Merck & C… New Jer… 0.282 0.615 0.1 0.123
10 MRK Merck & C… New Jer… 0.313 0.681 0.147 0.206
# … with 16 more rows, and 2 more variables: roe <dbl>, year <dbl>
# A tibble: 52 × 9
ticker name location ebitdamargin grossmargin netmargin ros
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 ZTS Zoetis I… New Jer… 0.217 0.64 0.101 0.171
2 ZTS Zoetis I… New Jer… 0.238 0.641 0.122 0.195
3 ZTS Zoetis I… New Jer… 0.335 0.659 0.168 0.286
4 ZTS Zoetis I… New Jer… 0.379 0.672 0.245 0.326
5 PRGO PERRIGO … Ireland 0.226 0.345 0.127 0.183
6 PRGO PERRIGO … Ireland 0.157 0.371 0.059 0.104
7 PRGO PERRIGO … Ireland -0.791 0.389 -0.76 -0.877
8 PRGO PERRIGO … Ireland 0.178 0.387 0.028 0.088
9 PFE Pfizer I… New Yor… 0.447 0.82 0.267 0.307
10 PFE Pfizer I… New Yor… 0.359 0.807 0.184 0.247
# … with 42 more rows, and 2 more variables: roe <dbl>, year <dbl>
# A tibble: 16 × 9
ticker name location ebitdamargin grossmargin netmargin ros
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 PFE Pfizer Inc New Yor… 0.371 0.795 0.164 0.223
2 PFE Pfizer Inc New Yor… 0.447 0.82 0.267 0.307
3 PFE Pfizer Inc New Yor… 0.634 0.814 0.427 0.51
4 PFE Pfizer Inc New Yor… 0.359 0.807 0.184 0.247
5 PFE Pfizer Inc New Yor… 0.289 0.803 0.142 0.183
6 PFE Pfizer Inc New Yor… 0.267 0.767 0.137 0.158
7 PFE Pfizer Inc New Yor… 0.353 0.786 0.406 0.233
8 PFE Pfizer Inc New Yor… 0.34 0.79 0.208 0.221
9 MYL Mylan NV United … 0.245 0.418 0.088 0.161
10 MYL Mylan NV United … 0.244 0.428 0.094 0.163
11 MYL Mylan NV United … 0.228 0.44 0.09 0.153
12 MYL Mylan NV United … 0.242 0.457 0.12 0.169
13 MYL Mylan NV United … 0.243 0.447 0.09 0.133
14 MYL Mylan NV United … 0.19 0.424 0.043 0.052
15 MYL Mylan NV United … 0.272 0.402 0.058 0.121
16 MYL Mylan NV United … 0.258 0.35 0.031 0.074
# … with 2 more variables: roe <dbl>, year <dbl>
select()
to select, rename and reorder columns.ticker
, name
and ros
# A tibble: 104 × 3
ticker name ros
<chr> <chr> <dbl>
1 ZTS Zoetis Inc 0.101
2 ZTS Zoetis Inc 0.171
3 ZTS Zoetis Inc 0.176
4 ZTS Zoetis Inc 0.195
5 ZTS Zoetis Inc 0.14
6 ZTS Zoetis Inc 0.286
7 ZTS Zoetis Inc 0.321
8 ZTS Zoetis Inc 0.326
9 PRGO PERRIGO Co plc 0.178
10 PRGO PERRIGO Co plc 0.183
# … with 94 more rows
select
to exclude columns ticker
, name
and ros
# A tibble: 104 × 6
location ebitdamargin grossmargin netmargin roe year
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 New Jersey; U.S.A 0.149 0.61 0.058 0.069 2011
2 New Jersey; U.S.A 0.217 0.64 0.101 0.113 2012
3 New Jersey; U.S.A 0.222 0.634 0.111 0.612 2013
4 New Jersey; U.S.A 0.238 0.641 0.122 0.465 2014
5 New Jersey; U.S.A 0.182 0.635 0.071 0.285 2015
6 New Jersey; U.S.A 0.335 0.659 0.168 0.587 2016
7 New Jersey; U.S.A 0.366 0.666 0.163 0.488 2017
8 New Jersey; U.S.A 0.379 0.672 0.245 0.694 2018
9 Ireland 0.216 0.343 0.123 0.248 2011
10 Ireland 0.226 0.345 0.127 0.236 2012
# … with 94 more rows
select
start with drug_cos
THENchange the name of location
to headquarter
put the columns in this order: year
, ticker
, headquarter
, netmargin
, roe
# A tibble: 104 × 5
year ticker headquarter netmargin roe
<dbl> <chr> <chr> <dbl> <dbl>
1 2011 ZTS New Jersey; U.S.A 0.058 0.069
2 2012 ZTS New Jersey; U.S.A 0.101 0.113
3 2013 ZTS New Jersey; U.S.A 0.111 0.612
4 2014 ZTS New Jersey; U.S.A 0.122 0.465
5 2015 ZTS New Jersey; U.S.A 0.071 0.285
6 2016 ZTS New Jersey; U.S.A 0.168 0.587
7 2017 ZTS New Jersey; U.S.A 0.163 0.488
8 2018 ZTS New Jersey; U.S.A 0.245 0.694
9 2011 PRGO Ireland 0.123 0.248
10 2012 PRGO Ireland 0.127 0.236
# … with 94 more rows
###Question: filter and select
Use inputs from your quiz question filter and select and replace SEE QUIZ with inputs from your quiz and replace the ??? in the code
start with drug_cos
THEN
extract information for the tickers BMY, BIIB, AMGN THEN
select the variables ticker
, year
and ros
# A tibble: 24 × 3
ticker year ros
<chr> <dbl> <dbl>
1 BMY 2011 0.256
2 BMY 2012 0.102
3 BMY 2013 0.175
4 BMY 2014 0.148
5 BMY 2015 0.121
6 BMY 2016 0.302
7 BMY 2017 0.249
8 BMY 2018 0.263
9 BIIB 2011 0.333
10 BIIB 2012 0.335
# … with 14 more rows
###Question: rename
start with drug_cos
THEN
extract information for the tickers LLY, MRK THEN
select the variables ticker, ros
and roe
. Change the name of roe
to return_on_equity
# A tibble: 16 × 3
ticker ros retrun_on_equity
<chr> <dbl> <dbl>
1 MRK 0.15 0.114
2 MRK 0.182 0.113
3 MRK 0.123 0.089
4 MRK 0.409 0.248
5 MRK 0.136 0.096
6 MRK 0.117 0.092
7 MRK 0.162 0.063
8 MRK 0.206 0.199
9 LLY 0.22 0.306
10 LLY 0.239 0.273
11 LLY 0.255 0.29
12 LLY 0.153 0.138
13 LLY 0.14 0.162
14 LLY 0.159 0.185
15 LLY 0.096 -0.015
16 LLY 0.155 0.264
by name
# A tibble: 104 × 3
ebitdamargin grossmargin netmargin
<dbl> <dbl> <dbl>
1 0.149 0.61 0.058
2 0.217 0.64 0.101
3 0.222 0.634 0.111
4 0.238 0.641 0.122
5 0.182 0.635 0.071
6 0.335 0.659 0.168
7 0.366 0.666 0.163
8 0.379 0.672 0.245
9 0.216 0.343 0.123
10 0.226 0.345 0.127
# … with 94 more rows
by position
# A tibble: 104 × 3
ebitdamargin grossmargin netmargin
<dbl> <dbl> <dbl>
1 0.149 0.61 0.058
2 0.217 0.64 0.101
3 0.222 0.634 0.111
4 0.238 0.641 0.122
5 0.182 0.635 0.071
6 0.335 0.659 0.168
7 0.366 0.666 0.163
8 0.379 0.672 0.245
9 0.216 0.343 0.123
10 0.226 0.345 0.127
# … with 94 more rows
select
helper functions starts_with("abc")
matches columns start with “abc”ends_with("abc")
matches columns end with “abc”
contains("abc")
matches columns contain “abc”
# A tibble: 104 × 2
ticker location
<chr> <chr>
1 ZTS New Jersey; U.S.A
2 ZTS New Jersey; U.S.A
3 ZTS New Jersey; U.S.A
4 ZTS New Jersey; U.S.A
5 ZTS New Jersey; U.S.A
6 ZTS New Jersey; U.S.A
7 ZTS New Jersey; U.S.A
8 ZTS New Jersey; U.S.A
9 PRGO Ireland
10 PRGO Ireland
# … with 94 more rows
drug_cos %>%
select(ticker, starts_with("r"))
# A tibble: 104 × 3
ticker ros roe
<chr> <dbl> <dbl>
1 ZTS 0.101 0.069
2 ZTS 0.171 0.113
3 ZTS 0.176 0.612
4 ZTS 0.195 0.465
5 ZTS 0.14 0.285
6 ZTS 0.286 0.587
7 ZTS 0.321 0.488
8 ZTS 0.326 0.694
9 PRGO 0.178 0.248
10 PRGO 0.183 0.236
# … with 94 more rows
# A tibble: 104 × 4
year ebitdamargin grossmargin netmargin
<dbl> <dbl> <dbl> <dbl>
1 2011 0.149 0.61 0.058
2 2012 0.217 0.64 0.101
3 2013 0.222 0.634 0.111
4 2014 0.238 0.641 0.122
5 2015 0.182 0.635 0.071
6 2016 0.335 0.659 0.168
7 2017 0.366 0.666 0.163
8 2018 0.379 0.672 0.245
9 2011 0.216 0.343 0.123
10 2012 0.226 0.345 0.127
# … with 94 more rows
group_by
to set up data for operations by groupgroup_by
# A tibble: 104 × 9
# Groups: ticker [13]
ticker name location ebitdamargin grossmargin netmargin ros
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 ZTS Zoetis Inc New Jer… 0.149 0.61 0.058 0.101
2 ZTS Zoetis Inc New Jer… 0.217 0.64 0.101 0.171
3 ZTS Zoetis Inc New Jer… 0.222 0.634 0.111 0.176
4 ZTS Zoetis Inc New Jer… 0.238 0.641 0.122 0.195
5 ZTS Zoetis Inc New Jer… 0.182 0.635 0.071 0.14
6 ZTS Zoetis Inc New Jer… 0.335 0.659 0.168 0.286
7 ZTS Zoetis Inc New Jer… 0.366 0.666 0.163 0.321
8 ZTS Zoetis Inc New Jer… 0.379 0.672 0.245 0.326
9 PRGO PERRIGO C… Ireland 0.216 0.343 0.123 0.178
10 PRGO PERRIGO C… Ireland 0.226 0.345 0.127 0.183
# … with 94 more rows, and 2 more variables: roe <dbl>, year <dbl>
# A tibble: 104 × 9
# Groups: year [8]
ticker name location ebitdamargin grossmargin netmargin ros
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 ZTS Zoetis Inc New Jer… 0.149 0.61 0.058 0.101
2 ZTS Zoetis Inc New Jer… 0.217 0.64 0.101 0.171
3 ZTS Zoetis Inc New Jer… 0.222 0.634 0.111 0.176
4 ZTS Zoetis Inc New Jer… 0.238 0.641 0.122 0.195
5 ZTS Zoetis Inc New Jer… 0.182 0.635 0.071 0.14
6 ZTS Zoetis Inc New Jer… 0.335 0.659 0.168 0.286
7 ZTS Zoetis Inc New Jer… 0.366 0.666 0.163 0.321
8 ZTS Zoetis Inc New Jer… 0.379 0.672 0.245 0.326
9 PRGO PERRIGO C… Ireland 0.216 0.343 0.123 0.178
10 PRGO PERRIGO C… Ireland 0.226 0.345 0.127 0.183
# … with 94 more rows, and 2 more variables: roe <dbl>, year <dbl>
summarize
to calculate summary statisticsroe
for all companiesmaximum roe
for each year
# A tibble: 8 × 2
year max_roe
<dbl> <dbl>
1 2011 0.451
2 2012 0.69
3 2013 1.13
4 2014 0.828
5 2015 1.31
6 2016 1.11
7 2017 0.932
8 2018 0.694
maximum roe
for each ticker
# A tibble: 13 × 2
ticker max_roe
<chr> <dbl>
1 ABBV 1.31
2 AGN 0.184
3 AMGN 0.585
4 BIIB 0.334
5 BMY 0.373
6 GILD 1.04
7 JNJ 0.244
8 LLY 0.306
9 MRK 0.248
10 MYL 0.283
11 PFE 0.342
12 PRGO 0.248
13 ZTS 0.694
Mean for year
*Find the mean ros
for eachyear
and call the variable mean_ros
Extract the mean for 2013
# A tibble: 1 × 2
year mean_ros
<dbl> <dbl>
1 2013 0.227
*The mean ros
for 2013 is 0.227 or 22.7%
Median for year * Find the median ros
for each year
and call the variable median_ros
* Extract the median for 2013
# A tibble: 1 × 2
year median_ros
<dbl> <dbl>
1 2013 0.224
*The median ros
for 2013 is 0.224 or 22.4%
drug_cos %>%
filter(ticker == "PFE") %>%
ggplot(aes(x = year, y = netmargin)) +
geom_col() +
scale_y_continuous(labels = scales::percent) +
labs(title = "Comparision of net margin",
subtitle = "for Pfizer from 2011 to 2018",
x = NULL, y = NULL) +
theme_classic()